

一、前言

臺灣位處地震帶上,地震活動頻繁,自 1901年起已有102次災害性地震[1]。因此,如 何提供地震預警系統(Earthquake Early Warning System, EEWS)來減低人民的生命危害與財產損 失,是非常重要的議題。1986年11月15日花 蓮地震發生時,地震波需30秒才會到達台北, 這顯示了地震預警系統的可能性[2]。地震預警 系統可依運作方式分為區域預警式與現地偵測 式(On-Site Detection)兩種,區域預警式由靠近 震源的地震儀來預估地震規模及震央,以提供 遠地的震度預估及預警時間,現地偵測式則以 現地地震儀所量得地震初達波(P Wave)來預估 震度及預警時間。此兩種方法皆可提供不同的 預警時間,但由於只針對地表震動特性進行分 析,只能提供地震是否到來及震度大小,可讓 人民即時避難及關閉重要設備,但對於是否造 成設備受損及二次災害並不明確,有可能造成 誤報,導致設備關閉後損失與不便,尤其是天 然氣分壓站或儲槽等可能造成地震二次災害的 設備。日本東京瓦斯公司(Tokyo Gas Co.)在1986 年開始在東京使用頻譜強度(Spectrum Intensity, SI)[3]作為地震預警指標,經多年實務驗證,可 有效降低誤報率, 並及時關閉瓦斯供應系統。

二、頻譜強度原理

頻譜強度(Spectrum Intensity, SI)為 Housner[4]在1952年首先提出,用於評估地 震作用下結構物自然週期在0.1至2.5秒,結構 物阻尼比(Damping Factor or Damping Ratio)採 用5%的虛擬頻譜速度(Pseudo-Spectral Velocity, PSV)和,其定義如下:

三聯科技股份有限公司/鄭丁興

sanlien 111

$$\mathrm{SI} = \int_{0.1}^{2.5} PSV dT$$

其中,T為結構物自然週期(秒)。

虛擬頻譜速度(Pseudo-Spectral Velocity, PSV) 為單自由度(Single Degree of Freedom, SDOF)結 構物在地震作用下的最大虛擬速度反應,其計 算方法如下:

$$\ddot{X}(t) + \frac{4\pi h}{T} \dot{X}(t) + (\frac{2\pi}{T})^2 X(t) = -X_g(t)$$

其中X, $\dot{X}(t)$ 為結構物在地震作用下的加速 度反應, $\dot{X}(t)$ 為結構物在地震作用下的速度反 應,X(t)為結構物在地震作用下的位移反應, $X_{g}(t)$ 為地震加速度歷時,h為結構物阻尼比。

$$PSV = \frac{SA*T}{2\pi} or \frac{2\pi*SD}{T}$$

其中,SA頻譜加速度(Spectral Acceleration) 為加速度反應 X(t)的最大值,SD頻譜位移 (Spectral Displacement)為位移反應X(t)的最大 值。 SAN LIEN TECHNOLOGY

日本東京瓦斯公司(Tokyo Gas Co.)在1986年 開始使用頻譜強度(Spectrum Intensity, SI)[3]作為 地震預警指標,但不使用虛擬頻譜速度PSV, 改用頻譜速度(Spectral Velocity, SV),如圖1所 示,結構物阻尼比採用20%,且取結構物自然 週期0.1至2.5秒的頻譜強度平均值,週期間隔 為0.1秒,其定義如下:

$$SI = \frac{1}{2.4} \int_{0.1}^{2.5} SV dT$$

其中,SV頻譜速度(Spectral Velocity)為速度 反應X(t)的最大值。

由於地震加速度歷時 $\ddot{X}(t)$ 有兩個水平向 $\ddot{X}_{FW}(t) 與<math>\ddot{X}_{NS}(t)$,需取向量和 $\ddot{X}_{sum}(t)$ 如下:

$$\ddot{X}_{sum}(t) = \sqrt{(\ddot{X}_{EW}(t))^2 + (\ddot{X}_{NS}(t))^2}$$

但由於此向量和所得之頻譜強度平均值, 未必是最大值。因此,日本東京瓦斯公司以每 1度角的向量和,分別評估頻譜強度平均值, 最後取0度至180度間的頻譜強度平均值之最大 值,其向量和定義如下:

$$\ddot{\mathbf{X}}_{\text{sum},\theta}(t) = \sqrt{\left(\ddot{X}_{EW}(t)\cos\theta\right)^2 + \left(\ddot{X}_{NS}(t)\sin\theta\right)^2},\\ 0 \le \theta \le 180 \text{ (f)}$$

另外,考量減少電腦計算時間,可將結構 物自然週期0.1至2.5秒的頻譜速度圖簡化為梯 形,如圖2所示。只計算結構物自然週期1.5與 2.5秒的頻譜速度,並取兩者之最大值,作為梯 形的頂部。

簡化為梯形的頻譜速度與實際頻譜速度之 關係如圖3所示,結果顯示兩者相關性高,可直 接採用簡化為梯形的頻譜速度。

三、頻譜強度適用性探討

1995年Kobe地震對東京瓦斯供應造成很大 的影響[7][8],如表1所示,受損中壓管(Medium Pressure Pipes)有106個、低壓管(Low Pressure Pipes) 有29459個,其中有5190個為地下管線,與住戶 連接的管有6184個受損,住戶的管有15085個受 損。

▼表1 Kobe地震對東京瓦斯供應之影響	
Number of leakage	106 in trunk pipes with medium pressure 26,459 in service pipes of low pressure, consisting of 5,190 under road pavement, 6,184 in connection to customer, and 15,085 in customers' pipe.
Time until shut-down	about 15 hours
Number of shut-down	859,000
Days until recovery	85 days

瓦斯供應系統關閉用了15小時,有859000 個用戶停止瓦斯供應,85天後瓦斯供應才恢復正 常。地震發生前,日本東京瓦斯公司在1994年 已安裝331個加速規(無網路連線,無紀錄檔), 以地表最大加速度(Peak Ground Acceleration, PGA) 與加速規頻譜強度SI作為瓦斯供應是否關閉之參 考,但是採用電話通報,因此費時15小時才關 閉瓦斯供應。地震後,安裝了3700個新型頻譜 強度SI(網路連線,記錄檔回傳)為主的加速規, 並建立網路式即時監測網(示於圖4),以更快速反 應,減少地震二次災害。設定的預警值為SI大於 30~40cm/sec,PGA大於200gal。

四、頻譜強度在地震預警系統之應 用實例

除前述的日本東京公司外,大台北瓦斯公司在921集集大地震前剛安裝了31個SI感測器於台北地區(示於圖5)[8],且設定SI值大於40cm/sec時,將瓦斯供應設備關閉。當921大地震發生時,共有16個SI感測器啟動,SI最大值為27.4cm/sec,發生於社子(Shazoo)。雖然,其最大加速度達139.6gal,但SI值未達40cm/sec,瓦斯供應設備不須關閉,地震後設備也未受損。

SAN LIEN TECHNOLOGY

以三聯科技公司的地震預警系統Palert+產 品為例,其新增的頻譜強度SI預警功能,可即 時評估頻譜強度SI值,並顯示於Palert+的液晶 螢幕上(如圖6所示)。

當頻譜強度SI值超過設定的預警值(例如 30cm/sec)時,Palert+的液晶螢幕會變亮(如圖7 所示),並發佈預警,以關閉瓦斯供應系統或其 他重要設備,減少地震二次災害。

五、結語

頻譜強度SI搭配地表最大加速度PGA作為 地震預警指標,經過東京與台北多年實務驗 證,可有效降低誤報率,並及時關閉瓦斯供應 系統,減少地震二次災害。此方法可推廣至設 備因震損造成重大損失的高科技廠等,或其它 有地震二次災害風險的化學品管槽等,三聯科 技已於其地震預警系統Palert+產品中新增頻譜 強度SI預警功能。同時,頻譜強度SI在液化風 險的預警也正發展中,將可協助救災中心評估 液化風險。

🖂 參考文獻

- [1] https://www.cwb.gov.tw/V7/knowledge/ encyclopedia/eq070_more.htm,中央氣象 局,2018年9月14日。
- [2] 林挺立、吳逸民,地震預警技術之發展, 三聯技術77期,2010年9月。
- Koganemaru, K., Shimizu, Y., Yanada, T., Furukawa, H. and Takubo, K. (1998), "Development of New SI Sensor", Proceedings of The Seismological Society of Japan, 1998 Fall Meeting, B65.
- [4] Housner, G. W. (1952) "Spectrum intensities of strong-motion earthquakes." Symposiumon earthquakes and blast effects on structures, Los Angeles, CA.
- [5] Yamazaki, F., "Seismic Monitoring and Early Damage Assessment Systems in Japan, Progress in Structural Engineering and Materials Banner, Vol. 3, Issue 1, pp. 66-75, 2001.
- [6] Katayama, T., Sato, N., and Saito, K. (1988), SI-Sensor for the Identification of Destructive Earthquake Ground Motion, Proceedings of Ninth World Conference on Earthquake Engineering, Vol. VII, Toyyo-Kyoto, Japan, August 2-9, 1988.
- [7] Nakayama, W., Shimizu, Y., Koganemaru, K., Development of Super Dense Realtime Disaster Mitigation System for Urban Gas Supply Network, Journal of Japan Association for Earthquake Engineering, Special Issue, 2004.
- [8] Yamazaki, F., Shimizu, Y., Nakayama, W., Koganemaru, K., Ishida, E., &Isoyama, R., New Development of Super-Dense Seismic Monitoring and Damage Assessment System for City Gas Networks, Structural Safety and Reliability, 2001.