

金屬工業研究發展中心/劉宗榮、蔡修安、陳碩卿、黃家宏

摘要

因應國內加工刀具業高值化發展,刀具 主要面臨使用壽命長短的問題,壽命攸關成本 高低與加工精準度。硬質刀具在加工鋁、銅合 金、陶瓷、高強度材料與高速加工環境下,因 為加工常伴隨著高溫、摩擦等環境,刀具鍍膜 容易脱落。於此激烈環境下鍍膜品質關係著加 工精度,因此鍍膜品質決定著加工成敗性。造 成鍍膜脱落原因除外在加工環境外,鍍膜本身 殘留應力即是造成脱落的主因。因此鍍膜殘留 應力檢測需求逐漸被重視,但平面鍍膜殘留應 力檢測技術,因為運算模型差異導致平面檢測 技術無法運用於曲面,造成有殘留應力數值卻 無法明確量化等問題。因此,本實驗欲藉由 X-ray繞射殘留應力量測法結合曲面殘留應力運 算公式,建立一套適用於曲面鍍膜的非破壞殘 留應力檢測與驗證方法,解決曲面應力量測無 法準確量化等問題。

關鍵字:X-ray繞射、殘留應力量測、曲面 *</sup>
鍍膜*

一、前言

國內加工刀具業逐漸往高值化發展,刀具 鍍膜也以低殘留應力為目標。因此鍍膜殘留應 力檢測需求逐漸被重視,其中平面鍍膜殘留應 力檢測技術已趨於成熟,但曲面鍍膜殘留應力 卻無持續性發展,因為運算模型差異導致平面 檢測技術無法運用於曲面,造成有殘留應力數 值卻無法明確量化等問題,而且國內外殘留應 力檢測技術也尚未針對此問題進行相關研究。 因此,將藉由X-ray繞射殘留應力量測法結合曲 面鍍膜殘留應力計算模型,並建立一套適用於 曲面鍍膜的非破壞殘留應力檢測與驗證方法, 解決曲面應力量測無法準確量化等問題。

sanlien (116)

二、產業需求與問題

現況刀具主要面臨使用壽命長短的問題, 壽命攸關成本高低與加工精準度。硬質刀具在 加工鋁、銅合金、陶瓷、高強度材料與高速加 工環境下,因為加工常伴隨著高溫、摩擦等環 境,刀具鍍膜容易脱落。於此激烈環境下鍍膜 品質關係著加工精度,因此鍍膜品質決定著加 工成敗性。造成鍍膜脱落原因除外在加工環境 外,鍍膜本身殘留應力即是造成脱落的主因,過 大殘留應力於加工初期容易造成鍍膜崩解,導致 加工品損壞甚至報廢,刀具問題如圖1所示。

隨著加工產業、鍍膜技術、模具產業快速 發展且朝高值化、高精度與功能性方向發展, 因此於鍍膜壽命分析逐漸受到重視。殘留應力 即為壽命分析重要指標之一,但因載具為多曲 面幾何形狀,受形狀影響容易造成量測誤差與 數值失真等問題。殘留應力檢測可分為接觸式 NLIEN TECHNOLOGY

與非破壞式檢測,常用的接觸式殘留應力量測 以盲孔法為主,該法會對樣品產生破壞且以鍍 膜厚度為微米等級,盲孔法已不適用。加上鍍 膜殘留應力量測逐漸以非破壞量測為主,而非 破壞殘留應力量測則以X光繞射法為主流,非 破壞量測更能於任何製程與各使用階段進行量 測,方便進行全面性掌控。因此為精準量測曲 面鍍膜殘留應力量測數值之準確性與降低數值 不確定性,本計畫欲藉由X-ray繞射殘留應力量 測法結合曲面鍍膜殘留應力運算模型,建立一 套適用於曲面鍍膜的非破壞殘留應力檢測與驗證 方法,解決曲面應力量測無法準確量化等問題。

▲ 圖1 刀具發展問題

三、非破壞式X-ray繞射法量測殘留 應力原理

X-Ray繞射法殘留應力量測是以不同入射 角與傾斜角度 ,量測幾個不同 ψ 角之應變,其 $\phi=0^{\circ}$,可以獲得 ϵ_{ψ} 與sin² $_{\psi}$ 的線性關係。

$$\varepsilon_{\phi\psi} = 1/2S_2\sigma_{\phi}\sin^2\psi + S_1(\sigma_{11}+\sigma_{22}) \qquad (3.1)$$

S₁與S₂為等相性撓性係數,會隨著晶格之 改面而變動,其定義如式(3.2):

$$S_1 = \frac{-v}{E} \not\boxtimes S_2 = \frac{(1+v)}{E}$$
 (3.2)

綜合以上各式,可以得到應力與應變最後 關係式為:

$$\sigma = \frac{\varepsilon_{\psi} E}{1 + \sin^2 \psi} \tag{3.3}$$

由式(3.3)所知sin²ψ與sin²為線性關係,故 以斜率法可以取的殘留應力值,如圖2所示。

但如將上述運算模式運用於曲面載具則 會有數值不可靠性等問題出現,主要原因在於 X-Ray光源與曲率半徑級數差異過為接近導致運 算過程會因為幾何影響造成數據失真與誤差過 大,因此需導入曲率殘留應力計算公式協助修 正X-Ray殘留應力計算。

本實驗架構如圖3所示,計畫實施流程分 為殘留應力檢測技術建立與曲面鍍膜殘留應力 驗證,以下將針對技術建立與驗證進行流程與 細部説明。

- 殘留應力檢測技術建立:此項流程涵蓋鍍膜 製程與殘留應力檢測,相關細部流程包含基 材深冷處理、表面改質、硬質鍍膜表面處 理、曲面鍍膜殘留應力檢測、曲面鍍膜殘留 應力分析模型建立。其中表面改質由成大微 奈米中心協助,深冷處理與硬質鍍膜表面處 理由處理組協助,曲面鍍膜殘留應力分析模 型由檢測組自行開發。
- 曲面鍍膜殘留應力驗證:本計畫之驗證法為 奈米壓痕法,選用原因為曲率鍍膜於奈米壓 痕的奈米維度之下,毫米等級的曲面將被視 為平面。

基材材料為碳化鎢簡單圓棒(曲率半徑 1.5、2、3mm),先以簡單曲面為後續之曲面 ・一
一
一
一
一
一
一
一
一
一
一
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二
二</p 徑。並將基材進行深冷處理以消除基材內部應 力,深冷參數為-184°C、降溫速率0.8°C/min、 持温4小時、爐冷回溫。最後於鍍膜前執行表 面電漿改質增加附著力減少內應力影響,改 質參數為氬氣氣氛、壓力50mtorr、氣體流量 100sccm、power:500W、持續2分鐘。以複合 式物理氣相沉積法製備AlTiCrN鍍膜,鍍膜前試 片進行前處理清洗與烘乾去除表面汙漬與水 分。後續使用離子源進行轟擊,進行深度清潔 與表面活化機制,最後進行AlTiCrN鍍膜成長。 控制參數為氬氣氣氛下,壓力5×10⁻⁴ torr、 鍍膜厚度1μm、10μm、加熱溫度為200°C、 300°C。固定製程方法與參數,改變溫度與膜

三聯技術2020年6月

MLIEN TECHNOLOGY

厚,將殘留應力源範圍縮小至熱應力影響,以 便後續探討溫度、膜厚與殘留應力之影響。

曲面殘留應力檢測技術採用金屬中心 Bruker D8 X光繞射儀為量測設備,原先該設備 之殘留應力分析模型為平面運算,為了整合曲 面鍍膜殘留應力計算模型,可從原始數據中擷 取應變值,應變值為晶格材料中受應力影響導 致晶格變形而換算出的數值。因此本檢測技術 主要由XRD量測材料應變值,並結合曲面鍍膜 殘留應力計算模型,以計算殘留應力值。曲面 鍍膜殘留應力計算模型使用的原型架構同為 XRD檢測,本模型為殘留應力量測的一種變形 法。本模型中主要參數包含應變、膜厚、基材 厚度、鍍膜楊式係數、基材楊氏係數、曲率等 材料特性。此模型使用架構為含有鍍膜之曲面 殘留應力計算式,因此暫不適用於無鍍膜之曲 面材料,因此開發出無鍍膜之曲面殘留應力計 算模型為後續發展方向之一。

驗證法採用奈米壓痕法,分析設備為成 大微奈米中心的G2000,該設備使用的探針 為Berkovich,且需與XRD為同類型模擬運算架 構,因此於多方比較下選用奈米壓痕殘留應力 計算法中的Xu model。Xu model探討的參數為 彈性恢復深度(he)與最大穿透深度(hmax)的比 值對應到降伏強度與殘留應力的比值,並經由 一系列運算而得到殘留應力值。其中包含鍍膜 楊氏係數、降伏強度、擬合常數等。

五、研究成果

本研究結果以曲率半徑3mm顯示檢測結 果,如圖4所示曲率半徑3mm鍍膜厚度10μm 的殘留應力值由曲面鍍膜殘留應力計算模型 所得的殘留應力值為-1245~-1281MPa之間; 由奈米壓痕驗證所得殘留應力值為-1245~ -1277MPa之間,曲面鍍膜殘留應力計算模型與 奈米壓痕驗證法整體差異性不大。

圖5曲率半徑3mm鍍膜厚度1μm的殘留應 力由曲面鍍膜殘留應力計算模型所得的殘留應 力值為-1518~-1559MPa之間;由奈米壓痕驗 證所得殘留應力值為-1518~-1562MPa之間, 此兩種計算方式所得殘留應力值皆差異不大。 由相同曲率不同膜厚之關係也可得知AlTiCrN膜 厚越厚者有較小的殘留壓應力,膜厚越小者則 反之。

圖6為曲率半徑3mm曲面鍍膜殘留應力計 算模型與奈米壓痕驗證法之誤差分佈圖,因以 將殘留應力轉換為兩方法間的誤差,因此不同 膜厚可一起比較探討於曲率半徑3mm中兩方法

sanlien.com

的差異性,由圖可知兩方法於95%兩個標準差 可信賴區間下,差異值為-3.0%~+3.4%之間。

圖7為殘留應力計算模型本身數據的誤差 分佈圖,分析於曲率半徑3mm中本方法本身的 重複性分佈。同樣採用誤差值表示,故不同厚 度之殘留應力可相互比較,由圖可知兩方法於 95%兩個標準差可信賴區間下,差異值為-3.0% ~+3.0%之間。

六、結語

因應國內加工刀具業逐漸往高值化發展需 求,進行刀具鍍膜殘留應力檢測開發。開發之 殘留應力量測技術將由傳統平面檢測提升至非 破壞曲面量測,且量測尺寸≤ 30 x 100 mm、 量測曲率半徑≥1.5 mm,曲面殘留應力量測誤 差度<±4%。後續可將目前發展之技術導入攜 帶式殘留應力檢測設備,建立適用於大型曲面 工件之殘留應力檢測分析技術之外,同步發展 刀具殘留應力分佈分析、殘留應力與製程參數 分析。並且將技術衍生至殘留應力量測與消除 技術開發,如:殘留應力量測現場化、殘留應力 安定化、消除技術、其他檢驗法交互驗證。未 來亦可應用於生醫及航太產品,預估可發展產 品鍍膜壽命、品質、製程改善等技術。

⊠ 參考文獻

- [1] Z. H. Xu and X. Li, "Estimation of Residual Stresses from Elastic Recovery of Nanoindentation", Philosoph. Mag. 86, 2835 (2006).
- [2] Swank, William David, Gavalya, Rick Allen, Wright, Julie Knibloe, & Wright, Richard Neil., "Residual Stress Determination from a Laser-Based Curvature Measurement." United States.
- [3] T. Oguri, K. Murata and Y. Sato, "X-ray Residual Stress Analysis of Cylindrically Curved Surface-Estimation of Circumferential Distributions of Residual Stresses", The Journal of Strain Analysis for Engineering Design, pp.459-468, Vol 38, Issue 5, 2003.
- [4] C.H. HSUEH and A.G. EVANS, "Residual Stresses in MetalEeramic Bonded Strips", J. Am. Ceram. SOC., Vol. 68, pp. 241-248, 1985.
- [5] Li-Na Zhua, Bin-Shi Xub, Hai-Dou Wangab & Cheng-Biao Wanga, "Measurement of Residual Stresses Using Nanoindentation Method", Critical Reviews in Solid State and Materials Sciences, pp. 1 - 13, 2014.
- [6] E. Frutos, M. Multignerb, J.L. Gonz lez-Carrascob, "Novel Approaches to Determine Residual Stresses by Ultramicroindentation Techniques: Application to Sand Blasted Austenitic Stainless Steel", Acta Materialia, Vol. 58, pp. 4191-4198, 2010.