

Palert P Wave Alarm System

User Manual

- ♦ Version: 1.03 2017/12
- ♦ SANLIEN TECHNOLOGY CORP.
- ♦ INDUSTRY AUTOMATION DIV.
- ♦ TEL:02-86659813 FAX:02-86659814
- ♦ http://www.sanlien.com

1. Features
2. Application Topology
3. Hardware information
3.1. Wiring
3.2. Information for LED Display
3.3. Digital Inputs Configurations11
Reset to Factory Setting
Display IP Information11
\odot Display The Last Earthquake Information11
3.4. Modbus RTU port11
3.5. RTD (Real Time Data stream) Output Control 12
3.6. DOs Wiring and Characteristics 12
3.7. DIs Wiring
3.8. Installation
4. Parameters Setup14
4.1. Parameters List
4.2. Parameters Description
\odot Address 100, NTP Synchronal and Server Connected Flag
\odot Address 101, Real-Time a Axis Acceleration18
\odot Address 102, Real-Time b Axis Acceleration19
\odot Address 103, Real-Time c Axis Acceleration19
⊘Address 104, Real-Time Vector Acceleration
⊘Address 105, a Axis Offset
⊘Address 106, b Axis Offset
⊘Address 107, c Axis Offset
⊘Address 108, Maximum Vector in Earthquake
\odot Address 109, Real-Time Earthquake Intensity20
⊘Address 110, Maximum Intensity in Earthquake
⊘Address 111, Earthquake Indicator
⊘Address 112, LTA Ready Indicator
⊘Address 113, Setup Parameters
⊘Address 114, Time Zone
⊘Address 115, STA Duration21
⊘Address 116, LTA Duration
⊘Address 117, STA/LTA Trigger Threshold
⊘Address 118, Operation Mode
⊘Address 119, DI/Os Status 24

⊘Address 120, Earthquake Event Sustained Duration	24
⊘Address 121, PGA Watch Threshold	25
⊘Address 122, Numbers Of Records for Offset Calculation	26
⊘Address 123 and 124, DOs Activated Setting	26
⊘Address 125, PGV within 1 Second	27
⊘Address 126, PGD within 1 Second	27
⊘Address 127, Information for Last Earthquake	27
⊘Address 128, Real-Time STA/LTA	27
⊘Address 129, Maximum a Axis Acceleration in Earthquake	27
⊘Address 130, Maximum b Axis Acceleration in Earthquake	27
⊘Address 131, Maximum c Axis Acceleration in Earthquake	28
⊘Address 132, Maximum a Axis Acceleration of Vector in Earthquake	28
⊘Address 133, Maximum b Axis Acceleration of Vector in Earthquake	28
⊘Address 134, Maximum c Axis Acceleration of Vector in Earthquake	28
⊘Address 135, PGA Trigger Axis	28
⊘Address 136, Real-time a AXIS Velocity	28
⊘Address 137, Real-time a Axis Pd	28
⊘Address 138, Real-time a Axistc	28
⊘Address 139, Pd Trigger Status	29
⊘Address 140, PGA Within 10 Seconds	29
⊘Address 141, Earthquake Time – Year	29
⊘Address 142, Earthquake Time – Month	29
⊘Address 143, Earthquake Time – Day	29
⊘Address 144, Earthquake Time – Hour	29
⊘Address 145, Earthquake Time – Minute	29
⊘Address 146, Earthquake Time – Second	29
⊘Address 147, System Time – Year	29
⊘Address 148, System Time – Month	29
⊘Address 149, System Time – Day	29
⊘Address 150, System Time – Hour	30
⊘Address 151, System Time – Minute	30
⊘Address 152, System Time – Second	30
⊘Address 153, Set System Time – Year	30
⊘Address 154, Set System Time – Month	30
⊚Address 155, Set System Time – Day	30
⊚Address 156, Set System Time – Hour	30
⊚Address 157, Set System Time – Minute	30
⊘Address 158, Set System Time – Second	31

⊘Address 159, Real-time a Axis Displacement	31
\odot Address 160, a Axis Displacement Warning Threshold	31
⊘Address 161, PGA Warning Threshold	31
	32
\odot Address 163, Trigger Mode and Low Pass Filter Select	33
⊘Address 164, Pd Watch Threshold	33
\odot Address 165, Calibration Factor for a Axis at 0 g	34
⊘Address 166, Calibration Factor for b Axis at 0 g	34
\odot Address 167, Calibration Factor for c Axis at 0 g	34
\odot Address 168, Calibration Factor for a Axis at 1 g	35
⊘Address 169, Calibration Factor for b Axis at 1g	35
\odot Address 170, Calibration Factor for c Axis at 1 g	35
⊘Address 171~174, NTP Server IP	36
⊚Address 175, Weekday	36
⊘Address 176~177, TCP Server 0 IP	36
⊘Address 178~179, TCP Server 1 IP	37
⊘Address 180~191, Palert Network Address Setting	37
⊘Address 192, Available Connections for Host	37
⊘Address 193, Streaming Output Control	38
⊚Address 194, Palert Modbus RTU Address setting	40
⊚Address 195, Watch and Warning Period	41
⊘Address 196, Maximum Acceleration within 1 Second	41
\odot Address 197, a Axis Displacement Watch Threshold	41
⊘Address 198, Earthquake Pre-Warning Register	42
⊘Address 199, Palert Firmware Version	42
⊚Address 200, Palert Serial Number	42
⊘Address 201, Modbus port setting	43
⊘Address 202, DO0 activated setting for pre-warning (Regional EEWS)	43
⊘Address 203, DO1 activated setting for pre-warning (Regional EEWS)	43
⊘Address 204 ~ 205, EEWS warning device FTE-D04 IP address	43
4.3. Modbus Related Information for Palert	44
4.4. Palert Operation Time Sequence	45
4.4.1. Power ON Time Sequence	45
4.4.2. Parameter Setting Time Sequence	45
4.4.3. Initialization Time Sequence	46
4.4.4. STA/LTA Trigger Time Sequence	46
4.4.5. Displacement, Pd, and PGA Trigger Time Sequence	
Table 1. Earthquake Intensity Table, Central Weather Bureau, Taiwan.	48

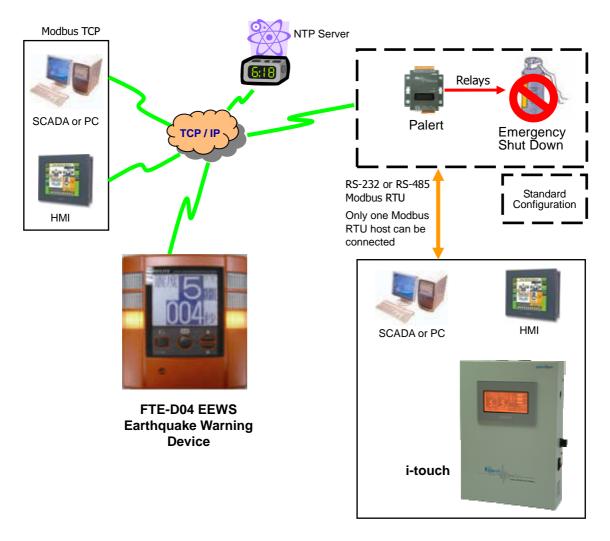
Appendix 1 EEV	V Dapar by Professor	r Yih-Min Wu., Nation	al Taiwan I Iniversity	10
	v rapel by riblessu	i infiniti vvu., inauon	ai Taiwan Oniversity.	

	Revisions			
Date	Description	Author		
20100418	The first edition 1.00	Ching		
20100429	Some phrases correction	Ching		
20100622	1. Streaming packet size is increased from 1100 to 1200	Ching		
	bytes.			
	2. Add DI/O status and EEW register in streaming packet.			
	3. Modify description for DI/O wiring.			
	4. Add quit program and FTP update description for			
	address 113.			
	5. Add Pa, Pv and Pd in streaming packet.			
	6. Add streaming packet type 300, 1191 and 1192.			
	7. FTP server IP setting			
20100913	Add earthquake maximum acceleration in streaming packet.	Ching		
20100916	DHCP setup method changed	Ching		
20110420	Modbus RTU port setup method changed	Ching		
	1. Add synchronize characters in streaming packet. (V.2056)			
	2. Modification for GB/T intensity standard			
20120313	3. Units corrections:	Ching		
	Pa: count / sec ^2			
	Pv: 0.01 cm / sec			
20120419	Add packet length in streaming packet.	Ching		
20120903	Add the connection ability with SANLIEN service server.	Ching		
20120903	(V.2068)	Ching		
20120906	Add Modbus TCP Client function. (V.2069)	Ching		
20130923	Add EEWS DO0, 1 Intensity control. (V.2077)	Ching		
20140107	Add EEWS alarm device FTE-D04. (V.2080)	Ching		
20140107	Add MMI intensity standard. (V.2081)	Ching		
20140324	Change Palert NTP priority , NTP server 、 TCP server 0 、 TCP Chir			
	server 1 (V.2085)			

1. Features

Palert, an earthquake P wave instrument with Pd technology embedded which is developed by Prof. Yih-Min Wu, National Taiwan University. The design to reduce earthquake damage that an alarm can be issued within 3 seconds after P wave is detected if following shock wave is destructive. Palert is a true earthquake on-site early warning instrument.

Offer four kinds of trigger algorithms Pd, PGA, Displacement and STA/LTA for detect earthquake. The Pd algorithm is developed by Prof. Yih-Min Wu. Please refer to related documents which have been published. PGA stands for Peak Ground Acceleration. Palert offers 10 Hz and 20 Hz low pass filter which is selected by user to filter out high frequency components in signal that generated by non-earthquake vibration. Component "a" is especially equips with real- time displacement calculation which is able to deploy displacement trigger algorithm in "a" axis. The conventional STA/LTA trigger algorithm is also available in Palert.


Intensity standards both for CWB (Central Weather Bureau, Taiwan) and China (GB/T) are available. Other useful earthquake information is stored and ready for retrieved in Palert. These include earthquake trigger time, maximum intensity, maximum acceleration for each component and maximum acceleration in vector. The powerful networking capability features streaming real-time data to hosts; automatically connect to up to 2 servers, NTP (Network Time Protocol) time calibration. With these networking functions Palert is a wonderful front end device for EEW (Earthquake Early Warning) system.

With PC utility it is possible to record earthquake data for research purpose and have voice warning if needed. Two outputs and supports industrial Modbus TCP/RTU communication standard which make Palert an ideal product for earthquake safety control in numerous applications.

For earthquake on-site early warning application, both FTE-D04 and i-touch could provide user friendly interface with Palert. For more information about i-touch and FTE-D04, please refer the website <u>http://www.sanlien.com.tw</u> or contact our sales directly.

2. Application Topology

8 / 49

3. Hardware information

3.1. Wiring

Pin Definition	Description
GND	Power Ground
Vs+	Power 10~30VDC 300mA
D2-	COM2 (RS-485 D-)
D2+	COM2 (RS-485 D+)
INIT*	For Service only. Please do not connect.
TXD1	COM1 TX
RXD1	COM1 RX
RTS1	COM1 RTS
CTS1	COM1 CTS
E1	Modbus TCP (10 / 100M Ethernet Port)
DO PWR	DC5V Output
DO0	Relay Output 0 (Photo MOS Relay, Form A) Normal
	Open , 0.6A/60VDC
DO1	Relay Output 1 (Photo MOS Relay, Form A) Normal
	Open , 0.6A/60VDC
DO COM	Common for Relay Output 0 and 1.
GND	0V
DIO	Digital Input 0 (LED display will show IP when grounding)
DI1	Digital Input 1 (LED display will show last event
	information when grounding)
DI2	Digital Input 2 (RTD Output Mode)
DI3	Digital Input 3 (Reserved)

3.2. Information for LED Display

Normal Status

Display will illustrate three kinds of information periodically which are "YYYY.MM.DD WWW", "hh.mm" and ".ss.". It will blink if NTP synchronal function is enabled and Palert is unable to synchronize with NTP server.

YYYY	: Year
MM	: Month
DD	: Day
WWW	: Weekday
hh	: Hour

mm : Minute

ss : Second

Earthquake Detected

Display will illustrate three kinds of information periodically which are maximum intensity, maximum acceleration and what kinds of earthquake trigger algorithms are triggered. If Palert is configured as CWB and MMI intensity standard then the information is "int.I", "aaaa.a" and "P.d.A.t.".

- int.I : "I" Represents Maximum Intensity
- aaaa.a : Maximum Acceleration in Gal Unit
- P. : Pd Event Triggered
- d. : Displacement Event Triggered
- A. : PGA Event Triggered
- t. : STA/LTA Event Triggered

If Palert is configured as GB/T intensity standard then the information is "II", "aa.aaa" and "P.d.A.t.".

- II : Maximum Intensityaa.aaa : Maximum Horizontal Acceleration in m/sec^2 UnitP. : Pd Event Triggered
- d. : Displacement Event Triggered
- A. : PGA Event Triggered
- t. : STA/LTA Event Triggered

Earthquake Pre-warning Information Sent by Server

When Palert is deployed as a front end instrument for EEW (Earthquake Early Warning) system, server is possible sending EEW information to Palert in order to have earthquake pre-warning time for people. The information is "II.-99".

- II : Expected Intensity
- -99 : Expected Earthquake Shockwave Arrival Time in Seconds.

Attention! This function is only available when Palert is connected to seismologic server which has advanced seismology program. Please consult SANLIEN if you have EEW application requirement. User must be noticed to follow the individual countries earthquake dispatch regulations or laws.

SANLIEN has provided EEWS service in Taiwan areas which information comes from CWB since 2014/01/01. Please consult our sales if you would like to active this service in Palert system.

3.3. Digital Inputs Configurations

Reset to Factory Setting

Palert will restore all parameters to factory default setting if all four DIs are grounding.

O Display IP Information

When DI0 is grounding Palert will display IP information as "XXX.XXX.XXX.XXX.XXX" format. Please keep Palert off any vibration otherwise it will display earthquake information instantly.

O Display The Last Earthquake Information

Palert will display the last earthquake information when DI1 is grounding. The display format is described as below.

CWB and MMI Intensity standard: "YYYY.MM.DD hh.mm.ss int.I aaaa.a"

YYYY	: Year
MM	: Month
DD	: Day
hh	: Hour
mm	: Minute
SS	: Second
int.l	: "I" Represents Maximum Intensity
aaaa.a	: Maximum Acceleration in Gal Unit.

GB/T intensity standard: "YYYY.MM.DD hh.mm.ss II aa.aaa"

YYYY	: Year
MM	: Month
DD	: Day
hh	: Hour
mm	: Minute
SS	: Second
II	: Maximum Intensity
aa.aaa	: Maximum Horizontal Acceleration in m/sec^2 Unit.

3.4. Modbus RTU port

The factory setting for Modbus RTU port is com 2 (RS-485). However, user can change it to com 1 (RS-232) by modify the parameter locates at Modbus AO address 201. Please refer chapter 4 for detail.

Palert also offers RTD (Real Time Data stream) output function over comport. The output port is determined by Modbus RTU port. It will be com 2 when Modbus RTU port is 1, when

Modbus RTU port is com 2 then RTD port will be com 1.

The communication configuration for Modbus RTU is "19200, n, 8, 1", for RTD is "9600, n, 8, 1".

3.5. RTD (Real Time Data stream) Output Control

When DI2 is grounding Palert will enable RTD output function. The data format is described as below.

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
0x0d	A axis	a axis	b axis	b axis	c axis	c axis	0x0a
	High	Low	High	Low	High	Low	

The data output comport is determined by Modbus RTU port. The communication configuration is "9600, n, 8, 1". User must be noticed that all DOs will be controlled by the commands from RTD comport and the 3 axes acceleration data are raw and without filtered. The DOs control commands are described as below.

	ON	OFF
DO0	#ON0#\r	#OFF0#\r
DO1	#ON1#\r	#OFF1#\r

\r stands for 0x0d

3.6. DOs Wiring and Characteristics

DO is acted just like a switch but with contact capacity of 60V 0.6A. Please refer to wiring diagram as below.

Output Type	Readback as 1	Readback as 0
	Relay On	Relay Off
From A Relay Contact	AC/DC DO+ DO-	AC/DC × DO + DO -

3.7. DIs Wiring

Please refer to DI wiring diagram as below.

Input Type	ON State DI value as <mark>1</mark>	OFF State DI value as 0		
Relay Contact	Relay Close	Relay Open		
TTL/CMOS Logic	Logic Level Low Logic GND V	Logic Level High Logic CND V		
Open Collector				

3.8. Installation

Due to the earthquake trigger algorithm Palert adapted that a axis should be installed as vertical component. It is recommended to have anti-impact transparent housing covered to avoid artificial impact. A backup battery is also good configuration to prevent power failure.

4. Parameters Setup

The parameters of Palert have been setup optimally. However, due to different installed location and background noise, some adjustments for parameters are necessary. Information below is all of the functions description of Palert. Please note that addresses are zero based.

4.1. Parameters List

Palert Modbus Address Mapping Table (400XXX)					
Address	R/W	Label	Description		
100		connection floor	NTP Server Synchronal and Servers Connected		
¹⁰⁰ R		connection_flag	Flag		
101	R	a_axis	Real-Time a Axis Acceleration		
102	R	b_axis	Real-Time b Axis Acceleration		
103	R	c_axis	Real-Time c Axis Acceleration		
104	R	vector	Real-Time Vector Acceleration		
105	R	a_offset	a Axis Offset		
106	R	b_offset	b Axis Offset		
107	R	c_offset	c Axis Offset		
108	R	vector_gal_max	Maximum Vector in Earthquake (Unit : gal)		
109	R	intensity_now	Real-Time Intensity		
110	R	intensity_max	Maximum Intensity in Earthquake		
111	R	event	Earthquake Indicator		
112	R	lta_flag	LTA Ready Indicator		
			Setup Option		
113	W	data_changed	(1 as Update, 2 as Write to EEPROM, 4 as Write IP		
115	vv	data_changed	Address Setting to EEPROM, 8 as Update System		
			Time, 16 as Change Servers IP)		
114	RW	time_diff	GMT Time Zone (Taipei is 8)		
115	RW	sta_time	STA Duration (Unit : 100 ms)		
116	RW	lta_time	LTA Duration (Unit : 100 ms)		
117	RW	sta_lta_th	STA/LTA Trigger Threshold		
			GB/T Intensity Standard, DO Control Mode,		
118	RW	op_mode	Intensity Calculated by Vector, Servers Connection		
			and NTP Enable, DHCP, Modbus TCP Client		
119	R	DIO_status	DI and DO status		

Palert Modbus Address Mapping Table (400XXX)					
Address	R/W	Label	Description		
120	RW event time		Earthquake Event Sustained Duration (Unit :		
120	RVV	event_time	second)		
121	RW	pga_watch_threshold	PGA Watch Threshold (Unit: count)		
122	RW	offset_records	Numbers of Records for Offset Calculation		
123	RW	DO0_gal	DO0 Activated Setting (Unit : gal)		
124	RW	DO1_gal	DO1 Activated Setting (Unit : gal)		
125	R	PGV_1S	Peak Ground Velocity (Unit: 0.01 cm/sec)		
126	R	PGD_1S	Peak Ground Displacement (Unit: 0.001 cm)		
127	R	last_event	Information for Last Earthquake		
128	R	sta_lta	Real-Time STA/LTA value		
129	R	a_maximum	Maximum a Axis Acceleration in Earthquake		
130	R	b_maximum	Maximum b Axis Acceleration in Earthquake		
131	R	c_maximum	Maximum c Axis Acceleration in Earthquake		
100	Р		Maximum a Axis Acceleration of Vector in		
132	R	vector_max_a	Earthquake		
133	R	vector may b	Maximum b Axis Acceleration of Vector in		
155	Γ.	vector_max_b	Earthquake		
134	R	vector_max_c	Maximum c Axis Acceleration of Vector in		
104			Earthquake		
135	R	pga_trig_axis	PGA Trigger Axis		
136	R	pv_int	Real-Time a Axis Velocity (Unit: 0.01 cm/sec)		
137	R	pd_int	Real-Time a Axis Pd (Unit: 0.001 cm)		
138	R	tc_int	Real-Time a Axis τ c (Unit: 0.001)		
139	R	pd_flag	Pd Trigger Status		
140	R	pga_10s	PGA Within 10 Seconds (Unit: count)		
141	R	e_year	Earthquake Time – Year		
142	R	e_month	Earthquake Time – Month		
143	R	e_day	Earthquake Time – Day		
144	R	e_hour	Earthquake Time – Hour		
145	R	e_minute	Earthquake Time – Minute		
146	R	e_second	Earthquake Time – Second		
147	R	sys_year	System Time – Year		
148	R	sys_month	System Time – Month		
149	R	sys_day	System Time – Day		

Palert Modbus Address Mapping Table (400XXX)						
Address	R/W	Label	Description			
150	R	sys_hour	System Time – Hour			
151	R	sys_minute	System Time – Minute			
152	R	sys_second	System Time – Second			
153	RW	set_year	Set System Time – Year			
154	RW	set_month	Set System Time – Month			
155	RW	set_day	Set System Time – Day			
156	RW	set_hour	Set System Time – Hour			
157	RW	set_minute	Set System Time – Minute			
158	RW	set_second	Set System Time – Second			
159	R	displacement	Real-Time a Axis Displacement (Unit: 0.001 cm)			
160	RW	disp_warning_threshold	A Axis Displacement Warning Threshold (Unit:			
100	Γ.VV	usp_warning_theshold	0.001 cm)			
161	RW	pga_warning_threshold	PGA Warning Threshold (Unit: count)			
162	RW	pd_warning_threshold	Pd Warning Threshold (Unit: 0.001 cm)			
163	RW	trig_mode	Trigger Mode and Low Pass Filter Selection			
164	RW	pd_watch_threshold	Pd Watch Threshold (Unit: 0.001 cm)			
165	RW	a_0g	Calibration Factor for a Axis at 0 g (Unit: 0.1 mg)			
166	RW	b_0g	Calibration Factor for b Axis at 0 g (Unit: 0.1 mg)			
167	RW	c_0g	Calibration Factor for c Axis at 0 g (Unit: 0.1 mg)			
168	RW	a_1g	Calibration Factor for a Axis at 1 g (Unit: 0.1 mg)			
169	RW	b_1g	Calibration Factor for b Axis at 1 g (Unit: 0.1 mg)			
170	RW	c_1g	Calibration Factor for c Axis at 1 g (Unit: 0.1 mg)			
171	RW	ntp_svr_ip1	NTP Server IP Address 1			
172	RW	ntp_svr_ip2	NTP Server IP Address 2			
173	RW	ntp_svr_ip3	NTP Server IP Address 3			
174	RW	ntp_svr_ip4	NTP Server IP Address 4			
175	R	week_day	System Time – Weekday			
176	RW	server0_ip12	Server0 IP Address 1, 2			
177	RW	server0_ip34	Server0 IP Address 3, 4			
178	RW	server1_ip12	Server1 IP Address 1, 2			
179	RW	server1_ip34	Server1 IP Address 3, 4			
180	RW	IP1	Palert IP address 1 / 4			
181	RW	IP2	Palert IP address 2 / 4			

Palert Modbus Address Mapping Table (400XXX)						
Address	R/W	Label	Description			
182	RW	IP3	Palert IP address 3/ 4			
183	RW	IP4	Palert IP address 4/ 4			
184	RW	Subnet mask 1	Palert IP subnet mask 1/ 4			
185	RW	Subnet mask 2	Palert IP subnet mask 2/ 4			
186	RW	Subnet mask 3	Palert IP subnet mask 3/ 4			
187	RW	Subnet mask 4	Palert IP subnet mask 4/ 4			
188	RW	Gateway 1	Palert IP gateway 1 / 4			
189	RW	Gateway 2	Palert IP gateway 2/ 4			
190	RW	Gateway 3	Palert IP gateway 3/ 4			
191	RW	Gateway 4	Palert IP gateway 4/ 4			
192	R	sck_remain	Available Connections for TCP Hosts			
193	RW	stream_output	Streaming Output Control			
194	RW	rtu_address	Palert Modbus RTU Address			
195	RW	light_sound_duration	Watch and Warning Period			
196	R	vector_gal_now	Maximum Acceleration Within 1 Second (Unit: gal)			
197	RW	disp_watch_threshold	a Axis Displacement Watch Threshold (Unit: 0.001 cm)			
198	RW	pre-alarm	Earthquake Pre-Warning Register			
199	R	version	Firmware version			
200	RW	serial_no	Palert Serial Number			
201	RW	mbus_port	Modbus RTU port setting			
202	RW	eewsDO0	DO0 activated intensity for EEWS pre-warning			
203	RW	eewsDO0	DO1 activated intensity for EEWS pre-warning			
204	RW	ffted04IP12	FTE-D04 IP Address 1, 2			
204	RW	ffted04IP34	FTE-D04 IP Address 3, 4			

4.2. Parameters Description

OAddress 100, NTP Synchronal and Server Connected Flag

bit 0

0: Palert has not synchronized with NTP server.

1: Palert has synchronized with NTP server. The synchronal interval is 10 minutes and Palert will try to synchronize with NTP server every 10 seconds if last synchronization is failed. The new connection will be established if there is no synchronization within 700 seconds. Regarding the IP address setting for NTP server please refer to addresses 171 to 174.

bit 1

0: Indicate that there is no connection with server 0.

1: Indicate that connection between server 0 and Palert has established.

Regarding the IP address setting for server 0 please refer to addresses 176 and 177.

bit 2:

0: Indicate that there is no connection with server 1.

1: Indicate that connection between server 1 and Palert has established.

Regarding the IP address setting for server 1 please refer to addresses 178 and 179.

bit 3:

0: Indicate that there is no connection with SANLIEN service server.

1: Indicate that the connection with SANLIEN service server has established.

bit 4:

0: Indicate that FTE-D04 in not connected.

1: Indicate that FT-D04 is connected.

Regarding the IP address setting for FTE-D04 please refer to addresses 204 and 205.

FTE-D04 is an earth quake early warning device which is able to receive earthquake pre-warning from Palert. Please contact our sales if you would like to have further information or support.

All indicators mentioned above will only available when NTP or servers connection is enabled. Please refer to address 118 for related setting.

OAddress 101, Real-Time a Axis Acceleration

This address stores real-time a axis acceleration, unit in count. One gal is equal to 16.7184 counts.

OAddress 102, Real-Time b Axis Acceleration

This address stores real-time b axis acceleration, unit in count. One gal is equal to 16.7184 counts.

OAddress 103, Real-Time c Axis Acceleration

This address stores real-time c axis acceleration, unit in count. One gal is equal to 16.7184 counts.

OAddress 104, Real-Time Vector Acceleration

This address stores real-time vector acceleration, unit in count. One gal is equal to 16.7184 counts. The equation of vector is described as below.

$$Vector = \sqrt{a^2 + b^2 + c^2}$$

OAddress 105, a Axis Offset

This address stores a axis offset compensation value; unit in count. One gal is equal to 16.7184 counts. The zero point output of accelerometer will be affected by installation or some other issues. This value will only calculate at initialization. Palert equips automatic zero algorithm so it is no need to calculate offset after initialization.

Due to installation that a axis will face gravity so there is around -980 gal offset in this axis.

OAddress 106, b Axis Offset

This address stores b axis offset compensation value; unit in count. One gal is equal to 16.7184 counts. The zero point output of accelerometer will be affected by installation or some other issues. This value will only calculate at initialization. Palert equips automatic zero algorithm so it is no need to calculate offset after initialization.

OAddress 107, c Axis Offset

This address stores c axis offset compensation value; unit in count. One gal is equal to 16.7184 counts. The zero point output of accelerometer will be affected by installation or some other issues. This value will only calculate at initialization. Palert equips automatic zero algorithm so it is no need to calculate offset after initialization.

OAddress 108, Maximum Vector in Earthquake

This address stores the maximum vector acceleration in last earthquake, unit as gal. This value will be updated when next earthquake is detected.

This value will be calculated as horizontal vector (GB/T) or tri-axes vector based on the setting on address 118 bit 0.

OAddress 109, Real-Time Earthquake Intensity

This address stores real-time intensity as grade from 0 to 7 based on CWB standard (Central Weather Bureau, Taiwan), or from 1 to 10 based on MMI standard, or from 0 to 11 based on GB/T standard (China). This number will only meaningful when earthquake indicator (address 111) is set.

CWB intensity standard (address 118 bit 0 is clear)

User can select intensity calculation standard by using vector or the maximum axis

acceleration. (address 118 bit 2)

- 0: Intensity is calculated by maximum acceleration in axes.
- 1: Intensity is calculated by vector.

GB/T intensity standard (address 118 bit 0 is set)

Intensity will be calculated by vector of two horizontal axes. The intensity mapping acceleration standards are described as below.

- 1: <= 1.59 cm/sec^2
- 2: 1.60 ~ 3.27 cm/sec^2
- 3: 3.28 ~ 6.73 cm/sec^2
- 4: 6.74 ~ 13.86 cm/sec^2
- 5: 13.87 ~ 28.54 cm/sec^2
- 6: 28.55 ~ 58.76 cm/sec^2
- 7: 58.77 ~ 121 cm/sec^2
- 8: 122 ~ 249 cm/sec^2
- 9: 250 ~ 513 cm/sec^2
- 10: 514 ~ 1056 cm/sec^2
- 11: >= 1057 cm/sec^2

OAddress 110, Maximum Intensity in Earthquake

This address stores the maximum intensity of the last earthquake, unit as grade form 0 to 7 based on CWB standard (Central Weather Bureau, Taiwan), or from 1 to 10 on MMI standard, or from 0 to 11 based on GB/T standard. Please refer to address 118 for detail setting.

OAddress 111, Earthquake Indicator

Related bits of this address will be set correspond to earthquake detected by certain trigger algorithms; otherwise the value will be 0 when there is no earthquake detected by trigger algorithms.

When related bits are set, the time needed to clear these bits is defined at address 120.

bit 0: a axis Displacement triggered.

- bit 1: Pd triggered.
- bit 2: PGA triggered.
- bit 3: STA/LTA triggered.

OAddress 112, LTA Ready Indicator

LTA stands for Long Time Average, which is average of vector in specified long time period. The opposing parameter is STA, which stands for Short Time Average. It will issue earthquake signal when STA divide LTA is great equal to STA/LTA threshold (address 117) and STA/LTA earthquake trigger algorithm is set (address 163 bit 3 is set).

Palert needs enough time to accumulate enough data for LTA calculation. This LTA Ready Indicator will become 1 when Palert LTA calculation is completed. In other word, Palert STA/LTA earthquake detecting algorithm can function only this Indicator is 1.

OAddress 113, Setup Parameters

Write proper value to this address to refresh Palert when change any parameters. The available setup options are described as below.

- 2 Update and write parameters into EEPROM and force Palert to restart.
- 4 Update and write Palert its own TCP/IP settings into EEPROM and force Palert to restart.
- 8 Update and write system clock. Palert will use time information stored in addresses 153 to 158 to update system RTC.
- 128 Force Palert to quit program and entering console mode. Caution! This procedure is only for firmware upgrade.
- 384 Force Palert to upgrade firmware from FTP server which is as same as TCP server1.

Palert will recalculate 3 axes offset value and STA, LTA during restart.

OAddress 114, Time Zone

This address stores the GMT time zone information for NTP time calibration, for example, Taipei is GMT + 8. It is no function when NTP service is disabled.

OAddress 115, STA Duration

STA stands for Short Time Average, which is average of vector in specified short time period. The opposing parameter is LTA, which stands for Long Time Average. It will issue earthquake signal when STA divide LTA is great equal to STA/LTA threshold (address 117) and STA/LTA earthquake trigger algorithm is set (address 163 bit 3 is set).

This address represents the duration of STA in 100ms unit. The factory setting of this value is 20 which mean 2 seconds. The larger number the less false trigger is. The maximum value is 1

/ 2 of LTA.

OAddress 116, LTA Duration

LTA stands for Long Time Average, which is average vector in specified long time period. The opposing parameter is STA, which stands for Short Time Average. It will issue earthquake signal when STA divide LTA is great equal to STA/LTA threshold (address 117) and STA/LTA earthquake trigger algorithm is set (address 163 bit 3 is set).

This address represents the duration of LTA in 100ms unit. The factory setting of this value is 800 which mean 80 seconds. The Larger number the more sensitive trigger is. The maximum number of LTA is 2000 which means 200 seconds.

OAddress 117, STA/LTA Trigger Threshold

Palert uses STA/LTA as one of earthquake detecting algorithms. It will issue earthquake signal (address 111 bit 3) when STA/LTA trigger algorithm is enabled (address 163 bit 3 is set) and STA divide LTA (Address 128) is great equal to this threshold (The factory preset value is 3). Please refer to the following table for more detail about DOs activity. The numbers with under line shown on this table are addresses.

	DO0		DO1	
DO Status		OFF		OFF
Trigger Mode	ON	OFF	ON	OFF
Displacement				
Trigger	<u>159</u> > <u>197</u>	Timer = <u>195</u> High byte	<u>159</u> > <u>160</u>	Timer = <u>195</u> Low byte
<u>163</u> bit 0				
Pd Trigger	127 - 164	Timor – 105 High byto	<u>137</u> > 162	Timor – 105 Low buto
<u>163</u> bit 1	<u>137</u> > <u>164</u>	Timer = <u>195</u> High byte	<u>137</u> > <u>102</u>	Timer = <u>195</u> Low byte
PGA Trigger	PGA > 121	Timor – 105 High byto	PGA > 161	Timor – 105 Low buto
<u>163</u> bit 2	PGA 2 <u>121</u>	Timer = <u>195</u> High byte	FGA > <u>101</u>	Timer = <u>195</u> Low byte
	<u>112</u> = 1		<u>112</u> = 1	
STA/LTA	AND		AND	
Trigger	<u>128</u> >= <u>117</u>	Timer = <u>120</u>	<u>128</u> >= <u>117</u>	Timer = <u>120</u>
<u>163</u> bit 3	AND		AND	
	<u>108</u> > <u>123</u>		<u>108</u> > <u>124</u>	

OAddress 118, Operation Mode

bit 0: Intensity calculation standard.

- 0: CWB (Taiwan) standard.
- 1: GB/T (China) standard.

bit 1: GAS_mode

0: Standard DOs control mode. During this mode, The DOs turn on time will be determined by which algorithm is triggered. Please refer to addresses 120, 121, 123, 124, 161, 162, 163, 164 and 195.

1: DOs will only turn on for 2 seconds when earthquake signal is set. This is suitable for gas solenoid control.

bit 2: CWB Intensity calculation mode. This bit is useful only if bit 0 is clear.

0: Intensity is calculated by maximum acceleration in axes.

1: Intensity is calculated by vector.

bit 3: Server 0 connection enable.

0: Disable server 0 connections.

1: Enable server 0 connections.

Palert supports servers' connection. By enable this function Palert could automatically connect to server 0 which are defined at addresses 176 and 177. This is very useful when Palert is installed at environment with no real IP. It is also the must function for EEW.

bit 4: NTP time calibration enable.

0: Disable NTP function.

1: Enable NTP function.

Palert equips NTP function which can automatically calibrate its system time every 10 minutes with NTP server which IP is specified at addresses from 171 to 174.

bit 5: DHCP client enable.

0: Disable DHCP client function.

1: Enable DHCP client function.

Warning, Once Palert got IP from DHCP server. There is a chance that user can not find correct Palert IP address to connect. To solve this problem, user could grounding DI0 and observe the IP information from LED display. Please keep Palert off any vibration otherwise it will display earthquake information instantly.

bit 6: Server 1 connection enable.

0: Disable server 1 connections.

1: Enable server 1 connections.

Palert supports 2 servers connection. By enable this function Palert could automatically connect to server 1 which are defined at addresses 178 and 179. This is very useful when Palert is installed at environment with no real IP. It is also the must function for EEW.

bit 7: Disable service from SANLIEN server.

SANLIEN will offer firmware update service if Palert is able to connect to internet.

- 0: Enable the service.
- 1: Disable the service.

bit 8: Enable connection with EEWS warning device FTE-D04,

- 0: Disable FTE-D04 connection.
- 1: Enable FTE-D04 connection.

Please refer the FTE-D04 IP setting on addresses 204 and 205.

bit 9: MMI intensity enable.

- 0: Disable MMI intensity standard.
- 1: Enable MMI intensity standard.

bit 10: KMA intensity enable.

- 0: Disable KMA intensity standard.
- 1: Enable KMA intensity standard.

bit 15: Modbus TCP Client function enable.

It is possible Palert acts as Modbus TCP client. When this bit is enabled Palert will automatically write its own 102 word registers into connected servers. The writing addresses of these 102 words are based on the remainder of Palert Modbus RTU station address divide 100; and then times 200.

For example; if Palert's Modbus RTU station address is 101, then the offset address is 200, which mean Palert's will write its own 102 word registers to servers from address 200. if Palert's Modbus RTU station address is 104, then the offset address is 800.

This function is very useful for n Palerts out of m Palerts (where m > n) topology for on-site auto shutdown system, which is able to immune false alarm by single station triggered.

OAddress 119, DI/Os Status

The DI/Os status will be updated every second. High byte represents DIs and low byte as DOs. There are 4 DIs map from bit 8 to bit 11 and 2 DOs map from bit 0 to bit 1. It is also possible to use Modus DI and DO commands to read these DI/Os status which their addresses are begin from 100.

OAddress 120, Earthquake Event Sustained Duration

When earthquake is detected, Palert will enter earthquake operation mode. Below describe

tasks performed during this stage.

- a. Related earthquake trigger algorithm indicators will be set to 1 (Address 111).
- b. Maximum acceleration, intensity and time will be update and store in real-time.
- c. Determining of turn-on or turn-off for both two DOs.
- d. Counting down the earthquake event duration timer. Timer will be reset if maximum acceleration occurred. Palert will return to normal operation mode when time is up. This address stores the timer value in second (The factory preset value is 30). Please refer to 4.4.4 earthquake time sequence.

Please refer to the following table for more detail about DOs activity. The numbers with under line shown on this table are addresses.

	DO0		DO1	
DO Status	ON	OFF	ON	OFF
Trigger Mode		OFF		OFF
Displacement				
Trigger	<u>159</u> > <u>197</u>	Timer = <u>195</u> High byte	<u>159</u> > <u>160</u>	Timer = <u>195</u> Low byte
<u>163</u> bit 0				
Pd Trigger	137 > 164	Timor – 105 High byto	<u>137</u> > <u>162</u>	Timer = 195 Low byte
<u>163</u> bit 1	<u>137</u> > <u>104</u>	Timer = <u>195</u> High byte	<u>137</u> > <u>102</u>	$TIME = \underline{195} LOW Dyte$
PGA Trigger	PGA > <u>121</u>	Timor – 105 High byto	PGA > <u>161</u>	Timor – 195 Low byto
<u>163</u> bit 2	FGR 2 <u>121</u>	Timer = <u>195</u> High byte	FGA > <u>101</u>	Timer = <u>195</u> Low byte
	<u>112</u> = 1		<u>112</u> = 1	
STA/LTA	AND		AND	
Trigger	<u>128</u> >= <u>117</u>	Timer = <u>120</u>	<u>128</u> >= <u>117</u>	Timer = <u>120</u>
<u>163</u> bit 3	AND		AND	
	<u>108</u> > <u>123</u>		<u>108</u> > <u>124</u>	

OAddress 121, PGA Watch Threshold

This address stores PGA (Peak Ground Acceleration) watch threshold with unit in count. One gal is equal to 16.7184 counts. The recommend value is 67 counts (4 gals). An earthquake signal will be set when PGA triggers is enabled (address 163 bit 2) and PGA is great and equal to this threshold.

Please refer to the following table for more detail about DOs activity. The numbers with under line shown on this table are addresses.

	DO0		DO1	
DO Status Trigger Mode	ON	OFF	ON	OFF

		DO0		DO1
DO Status Trigger Mode	ON	OFF	ON	OFF
Displacement				
Trigger <u>163</u> bit 0	<u>159</u> > <u>197</u>	Timer = <u>195</u> High byte	<u>159</u> > <u>160</u>	Timer = <u>195</u> Low byte
Pd Trigger 163 bit 1	<u>137</u> > <u>164</u>	Timer = <u>195</u> High byte	<u>137</u> > <u>162</u>	Timer = <u>195</u> Low byte
PGA Trigger	PGA > <u>121</u>	Timer = <u>195</u> High byte	PGA > <u>161</u>	Timer = <u>195</u> Low byte
<u>163</u> bit 2	<u>10/// 121</u>	111101 - <u>100</u> 1 light byte	10/17	111101 = <u>100</u> 2011 byte
	<u>112</u> = 1		<u>112</u> = 1	
STA/LTA Trigger	AND		AND	
	<u>128</u> >= <u>117</u>	Timer = <u>120</u>	<u>128</u> >= <u>117</u>	Timer = <u>120</u>
<u>163</u> bit 3	AND		AND	
	<u>108</u> > <u>123</u>		<u>108</u> > <u>124</u>	

OAddress 122, Numbers Of Records for Offset Calculation

This address stores the number of records to be averaged for offset calculation during initialization (The factory preset value is 200).

OAddress 123 and 124, DOs Activated Setting

These addresses store the activated acceleration threshold for DOs for STA/LTA trigger algorithm. The unit is gal and default setting for DO0 is 10 and DO1 is 50.

Please refer to the following table for more detail about DOs activity. The numbers with under line shown on this table are addresses.

		DO0	DO1	
DO Status Trigger Mode	ON	OFF	ON	OFF
Displacement				
Trigger	<u>159</u> > <u>197</u>	Timer = <u>195</u> High byte	<u>159</u> > <u>160</u>	Timer = <u>195</u> Low byte
<u>163</u> bit 0				
Pd Trigger	127 \$ 164	Timor – 105 High byto	127 \$ 162	Timor – 105 Low buto
<u>163</u> bit 1	<u>137</u> > <u>164</u>	Timer = <u>195</u> High byte	<u>137</u> > <u>162</u>	Timer = <u>195</u> Low byte
PGA Trigger	PCA > 121	Timer = <u>195</u> High byte	PGA > <u>161</u>	Timor – 105 Low byte
<u>163</u> bit 2	PGA > <u>121</u>	$\text{Finel} = \underline{195} \text{ High byte}$	FGA > <u>101</u>	Timer = <u>195</u> Low byte

	DO0 DO1			
DO Status Trigger Mode	ON	OFF	ON	OFF
	<u>112</u> = 1		<u>112</u> = 1	
STA/LTA	AND		AND	
Trigger	<u>128</u> >= <u>117</u>	Timer = <u>120</u>	<u>128</u> >= <u>117</u>	Timer = <u>120</u>
<u>163</u> bit 3	AND		AND	
	<u>108</u> > <u>123</u>		<u>108</u> > <u>124</u>	

OAddress 125, PGV within 1 Second

This address stores the maximum real-time three axes PGV (Peak Ground Velocity) within one second. The unit is 0.01 cm/second.

OAddress 126, PGD within 1 Second

This address stores the maximum real-time three axes PGD (Peak Ground Displacement) within one second. The unit is 0.001 cm.

OAddress 127, Information for Last Earthquake

This address stores the last earthquake triggered information which is the copy of address 111.

OAddress 128, Real-Time STA/LTA

Palert uses STA/LTA as one of earthquake detecting algorithms. It will issue earthquake signal (address 111 bit 3) when STA/LTA trigger algorithm is enabled (address 163 bit 3 is set) and this value is great equal to STA/LTA threshold (address 117).

Regarding the DOs activities when earthquake signal is set please refer to address 123 and 124 for more detail.

OAddress 129, Maximum a Axis Acceleration in Earthquake

Palert will store the information for maximum acceleration of the latest earthquake. This address stores the maximum acceleration in a axis, unit in count. One gal is equal to 16.7184 counts.

OAddress 130, Maximum b Axis Acceleration in Earthquake

Palert will store the information for maximum acceleration of the latest earthquake. This address stores the maximum acceleration in b axis, unit in count. One gal is equal to 16.7184 counts.

OAddress 131, Maximum c Axis Acceleration in Earthquake

Palert will store the information for maximum acceleration of the latest earthquake. This address stores the maximum acceleration in c axis, unit in count. One gal is equal to 16.7184 counts.

OAddress 132, Maximum a Axis Acceleration of Vector in Earthquake

Palert will store the information for maximum acceleration of the latest earthquake. This address stores the a component acceleration in the maximum vector, unit in count. One gal is equal to 16.7184 counts.

OAddress 133, Maximum b Axis Acceleration of Vector in Earthquake

Palert will store the information for maximum acceleration of the latest earthquake. This address stores the b component acceleration in the maximum vector, unit in count. One gal is equal to 16.7184 counts.

OAddress 134, Maximum c Axis Acceleration of Vector in Earthquake

Palert will store the information for maximum acceleration of the latest earthquake. This address stores the c component acceleration in the maximum vector, unit in count. One gal is equal to 16.7184 counts.

OAddress 135, PGA Trigger Axis

This address stores the PGA trigger axis when PGA trigger is enabled (address 163 bit 2) and PGA earthquake signal is set. 1 is a axis triggered, 2 is b axis triggered and 3 is c axis triggered, 0 as none.

OAddress 136, Real-time a AXIS Velocity

This address stores the real-time a axis velocity which is integrated from a axis acceleration. The unit is 0.01 cm/second.

OAddress 137, Real-time a Axis Pd

This address stores the real-time a axis Pd, unit in 0.001 cm. There is a very high possibility the following S wave will be very destructive when P wave is detected and Pd is great equal to 0.3 cm. (According to the research of Prof. Yih-Min, Wu. NTU.). Please refer to appendix 1 for more information about Pd.

\odot Address 138, Real-time a Axis au c

This address stores the real-time a axis τ c, unit in 0.001 Hz. Please refer to appendix 1 for more information about τ c.

OAddress 139, Pd Trigger Status

This address stores the working status of Pd trigger algorithm. It is useful only address 163 bit 1 is set.

bit 4: P wave is detected. bit 5: P wave is detected.

bit 6: Pd is greater and equal to Pd watch threshold.

bit 7: Pd is greater and equal to Pd warning threshold.

OAddress 140, PGA Within 10 Seconds

This address stores the PGA within 10 seconds with unit in count. One gal is equal to 16.7184 counts.

OAddress 141, Earthquake Time – Year

This address stores the last earthquake happened time, year.

OAddress 142, Earthquake Time – Month

This address stores the last earthquake happened time, month.

OAddress 143, Earthquake Time – Day

This address stores the last earthquake happened time, day.

OAddress 144, Earthquake Time – Hour

This address stores the last earthquake happened time, hour.

OAddress 145, Earthquake Time – Minute

This address stores the last earthquake happened time, minute.

OAddress 146, Earthquake Time – Second

This address stores the last earthquake happened time, second.

OAddress 147, System Time – Year

This address indicates the Palert system time, year.

OAddress 148, System Time – Month

This address indicates the Palert system time, month.

OAddress 149, System Time – Day

This address indicates the Palert system time, day.

OAddress 150, System Time – Hour

This address indicates the Palert system time, hour.

OAddress 151, System Time – Minute

This address indicates the Palert system time, minute.

OAddress 152, System Time – Second

This address indicates the Palert system time, second.

OAddress 153, Set System Time – Year

Although Palert embedded with NTP function, user still could use addresses from 153 to 158 to set system time. This address stores the information for set Palert system time, which is year. Palert will update its RTC (system time) by taking time information stored in addresses from 153 to 158 when address 113 is set to 8.

OAddress 154, Set System Time – Month

Although Palert embedded with NTP function, user still could use addresses from 153 to 158 to set system time. This address stores the information for set Palert system time, which is month. Palert will update its RTC (system time) by taking time information stored in addresses from 153 to 158 when address 113 is set to 8.

OAddress 155, Set System Time – Day

Although Palert embedded with NTP function, user still could use addresses from 153 to 158 to set system time. This address stores the information for set Palert system time, which is day. Palert will update its RTC (system time) by taking time information stored in addresses from 153 to 158 when address 113 is set to 8.

OAddress 156, Set System Time – Hour

Although Palert embedded with NTP function, user still could use addresses from 153 to 158 to set system time. This address stores the information for set Palert system time, which is hour. Palert will update its RTC (system time) by taking time information stored in addresses from 153 to 158 when address 113 is set to 8.

OAddress 157, Set System Time – Minute

Although Palert embedded with NTP function, user still could use addresses from 153 to 158 to set system time. This address stores the information for set Palert system time, which is minute. Palert will update its RTC (system time) by taking time information stored in addresses

from 153 to 158 when address 113 is set to 8.

OAddress 158, Set System Time – Second

Although Palert embedded with NTP function, user still could use addresses from 153 to 158 to set system time. This address stores the information for set Palert system time, which is second. Palert will update its RTC (system time) by taking time information stored in addresses from 153 to 158 when address 113 is set to 8.

OAddress 159, Real-time a Axis Displacement

This address stores the real-time a axis displacement, unit in 0.001 cm. It is double integrated from a axis acceleration and filter by 0.075 Hz high pass filter.

OAddress 160, a Axis Displacement Warning Threshold

This address stores a axis warning threshold, unit in 0.001 cm. The recommended setting is 0.35 cm. The earthquake signal will be set (address 111 bit 0) when displacement trigger algorithm is enabled (address 163 bit 0) and displacement (address 159) is great equal to this threshold.

Please refer to the following table for more detail about DOs activity. The numbers with under line shown on this table are addresses.

	DO0		DO1	
DO Status Trigger Mode	ON	OFF	ON	OFF
Displacement				
Trigger	<u>159</u> > <u>197</u>	Timer = <u>195</u> High byte	<u>159</u> > <u>160</u>	Timer = <u>195</u> Low byte
<u>163</u> bit 0				
Pd Trigger	127 . 164	Timor – 105 High byto	127 \$ 162	Timor – 105 Low byte
<u>163</u> bit 1	<u>137</u> > <u>164</u>	Timer = <u>195</u> High byte	<u>137</u> > <u>162</u>	Timer = <u>195</u> Low byte
PGA Trigger	PGA > <u>121</u>	Timor – 105 High byto	PGA > 161	Timer = <u>195</u> Low byte
<u>163</u> bit 2	FGA > <u>121</u>	Timer = <u>195</u> High byte	FGA > <u>101</u>	$\text{Timer} = \underline{195} \text{ Low byte}$
	<u>112</u> = 1		<u>112</u> = 1	
STA/LTA Trigger	AND		AND	
<u>163</u> bit 3	<u>128</u> >= <u>117</u>	Timer = <u>120</u>	<u>128</u> >= <u>117</u>	Timer = <u>120</u>
<u>105</u> bit 5	AND		AND	
	<u>108</u> > <u>123</u>		<u>108</u> > <u>124</u>	

OAddress 161, PGA Warning Threshold

This address stores PGA warning threshold, unit in count. The recommended setting is 418 counts (25 gals). The earthquake signal will be set (address 111 bit 2) when PGA trigger

algorithm is enabled (Address 163 bit 2) and PGA is great equal to this threshold. Please refer to the following table for more detail about DOs activity. The numbers with under line shown on this table are addresses.

	DO0		DO1	
DO Status	ON	OFF	ON	OFF
Trigger Mode	ON	OFF	ON	OFF
Displacement				
Trigger	<u>159</u> > <u>197</u>	Timer = <u>195</u> High byte	<u>159</u> > <u>160</u>	Timer = <u>195</u> Low byte
<u>163</u> bit 0				
Pd Trigger	<u>137</u> > <u>164</u>	<u>37</u> > <u>164</u> Timer = <u>195</u> High byte	<u>137</u> > <u>162</u>	Timer = <u>195</u> Low byte
<u>163</u> bit 1				
PGA Trigger	PGA > <u>121</u>	Timer = <u>195</u> High byte	PGA > <u>161</u>	Timer = <u>195</u> Low byte
<u>163</u> bit 2				
	<u>112</u> = 1		<u>112</u> = 1	
	AND		AND	
STA/LTA Trigger	<u>128</u> >= <u>117</u>	Timer = <u>120</u>	<u>128</u> >= <u>117</u>	Timer = <u>120</u>
<u>163</u> bit 3	AND		AND	
	<u>108</u> > <u>123</u>		<u>108</u> > <u>124</u>	

OAddress 162, Pd Warning Threshold

This address stores Pd warning threshold, unit in 0.001 cm. The recommended setting is 0.35 cm. The earthquake signal will be set (address 111 bit 1) when Pd trigger algorithm is enabled (Address 163 bit 1) and Pd (address 137) is great equal to this threshold.

Please refer to the following table for more detail about DOs activity. The numbers with under line shown on this table are addresses.

	DO0		DO1	
DO Status Trigger Mode	ON	OFF	ON	OFF
Displacement				
Trigger	<u>159</u> > <u>197</u>	Timer = <u>195</u> High byte	<u>159</u> > <u>160</u>	Timer = <u>195</u> Low byte
<u>163</u> bit 0				
Pd Trigger	<u>137 > 164</u>	Timer = <u>195</u> High byte	<u> 137 > 162</u>	Timer = 195 Low byte
<u>163</u> bit 1	<u>137</u> > <u>104</u>	$Timer = \frac{195}{195} Timer Dyte$	<u>157</u> > <u>102</u>	$TIME = \underline{195} LOW Dyte$
PGA Trigger	PGA > <u>121</u>	Timer = <u>195</u> High byte	PGA > <u>161</u>	Timer = 195 Low byte
<u>163</u> bit 2	FGA > <u>121</u>	$\text{Finel} = \underline{195} \text{ High byte}$	FGA > <u>101</u>	$\text{Timer} = \underline{195} \text{ Low byte}$

	DO0		DO1	
DO Status Trigger Mode	ON	OFF	ON	OFF
	<u>112</u> = 1 AND		<u>112</u> = 1 AND	
STA/LTA Trigger <u>163</u> bit 3	<u>128</u> >= <u>117</u> AND	Timer = <u>120</u>	<u>128</u> >= <u>117</u> AND	Timer = <u>120</u>
	<u>108</u> > <u>123</u>		<u>108</u> > <u>124</u>	

OAddress 163, Trigger Mode and Low Pass Filter Select

Palert equipped 4 kinds of earthquake trigger algorithm as below. The recommend trigger algorithms are Pd and STA/LTA.

- bit 0: Displacement trigger enable.
- bit 1: Pd trigger enable.
- bit 2: PGA trigger enable.
- bit 3: STA/LTA trigger enable.
- bit 7: Low pass filter selector, 0 as 10 Hz, 1 as 20 Hz.
- STA/LTA trigger algorithm is the only one needs to wait for the LTA flag is ready (address 112).
- Other trigger algorithms are able to detect earthquake right after offset calculation.

Please note that user must write 2 into address 113 in order to effect the above changes.

OAddress 164, Pd Watch Threshold

This address stores Pd watch threshold, unit in 0.001 cm. The recommended setting is 0.2 cm. The earthquake signal will be set (address 111 bit 1) when Pd trigger algorithm is enabled (Address 163 bit 1) and Pd (address 137) is great equal to this threshold.

Please refer to the following table for more detail about DOs activity. The numbers with under line shown on this table are addresses.

	DO0		DO1	
DO Status Trigger Mode	ON	OFF	ON	OFF
Displacement Trigger <u>163</u> bit 0	<u>159</u> > <u>197</u>	Timer = <u>195</u> High byte	<u>159</u> > <u>160</u>	Timer = <u>195</u> Low byte
Pd Trigger <u>163</u> bit 1	<u>137</u> > <u>164</u>	Timer = <u>195</u> High byte	<u>137</u> > <u>162</u>	Timer = <u>195</u> Low byte
PGA Trigger <u>163</u> bit 2	PGA > <u>121</u>	Timer = <u>195</u> High byte	PGA > <u>161</u>	Timer = <u>195</u> Low byte

	DO0		DO1	
DO Status Trigger Mode	ON	OFF	ON	OFF
STA/LTA Trigger <u>163</u> bit 3	<u>112</u> = 1		<u>112</u> = 1	
	AND	Timer = <u>120</u>	AND	
	<u>128</u> >= <u>117</u>	OR	<u>128</u> >= <u>117</u>	Timer = <u>120</u>
	AND	DO1 ON	AND	
	<u>108</u> > <u>123</u>		<u>108</u> > <u>124</u>	

OAddress 165, Calibration Factor for a Axis at 0 g

Palert is calibrated at factory already, so it is not recommend for user to change these calibration factors stored in addresses 165 to 170.

Address 165 stores the zero g calibration factor for a axis. Below describe the calibration procedures.

- a. Align Palert a axis horizontally.
- b. Write 0 to this address and force Palert into initiation.
- c. Find out a axis offset value and write this value by 10 times. For example, write 102 into this address if offset value is 10.2 mg.
- d. Check if offset value is near by 0.

Caution! Any change of this address may trigger earthquake signal, so please make sure Palert disconnect with other system before you make above procedures.

OAddress 166, Calibration Factor for b Axis at 0 g

Palert is calibrated at factory already, so it is not recommend for user to change these calibration factors stored in addresses 165 to 170.

Address 166 stores the zero g calibration factor for b axis. Below describe the calibration procedures.

- a. Align Palert b axis horizontally.
- b. Write 0 to this address and force Palert into initiation.
- c. Find out b axis offset value and write this value by 10 times. For example, write 102 into this address if offset value is 10.2 mg.
- d. Check if offset value is near by 0.

Caution! Any change of this address may trigger earthquake signal, so please make sure Palert disconnect with other system before you make above procedures.

OAddress 167, Calibration Factor for c Axis at 0 g

Palert is calibrated at factory already, so it is not recommend for user to change these calibration factors stored in addresses 165 to 170.

Address 167 stores the zero g calibration factor for c axis. Below describe the calibration procedures.

- a. Align Palert c axis horizontally.
- b. Write 0 to this address and force Palert into initiation.
- c. Find out c axis offset value and write this value by 10 times. For example, write 102 into this address if offset value is 10.2 mg.
- d. Check if offset value is near by 0.

Caution! Any change of this address may trigger earthquake signal, so please make sure Palert disconnect with other system before you make above procedures.

OAddress 168, Calibration Factor for a Axis at 1 g

Palert is calibrated at factory already, so it is not recommend for user to change these calibration factors stored in addresses 165 to 170.

Address 168 stores the 1g calibration factor for a axis. Below describe the calibration procedures.

- a. Align Palert a axis vertically.
- b. Write 10000 to this address and force Palert into initiation.
- c. Find out a axis offset value and write this value by 10 times. For example, write 10208 into this address if offset value is 1020.8 mg.
- d. Check if real-time value is near by 1 g.

Caution! Any change of this address may trigger earthquake signal, so please make sure Palert disconnect with other system before you make above procedures.

OAddress 169, Calibration Factor for b Axis at 1g

Palert is calibrated at factory already, so it is not recommend for user to change these calibration factors stored in addresses 165 to 170.

Address 169 stores the 1g calibration factor for b axis. Below describe the calibration procedures.

- a. Align Palert b axis vertically.
- b. Write 10000 to this address and force Palert into initiation.
- c. Find out b axis offset value and write this value by 10 times. For example, write 10208 into this address if offset value is 1020.8 mg.
- d. Check if offset value is near by 1g.

Caution! Any change of this address may trigger earthquake signal, so please make sure Palert disconnect with other system before you make above procedures.

OAddress 170, Calibration Factor for c Axis at 1 g

Palert is calibrated at factory already, so it is not recommend for user to change these

calibration factors stored in addresses 165 to 170.

Address 170 stores the 1g calibration factor for c axis. Below describe the calibration procedures.

- a. Align Palert c axis vertically.
- b. Write 10000 to this address and force Palert into initiation.
- c. Find out c axis offset value and write this value by 10 times. For example, write 10208 into this address if offset value is 1020.8 mg.
- d. Check if offset value is near by 1 g.

Caution! Any change of this address may trigger earthquake signal, so please make sure Palert disconnect with other system before you make above procedures.

OAddress 171~174, NTP Server IP

Palert equipped with NTP function which could calibrate its system time via network time server. These addresses store NTP server IP information (Factory preset value is 192.43.244.18 which is time.nist.gov).

When these addresses are changed user must also write 2 into address 113 to effect the changes.

OAddress 175, Weekday

This address indicates the weekday of Palert system time. The number is from 1 to 6 stands for Monday to Saturday, 7 for Sunday.

OAddress 176~177, TCP Server 0 IP

Palert has ability to connect with servers automatically. This is an advantage for Palert at the site without real IP. It is also the must function for EEW system. When server 0 connections enable is set (address 118 bit 3). Palert will try to connect to server 0 at all time. The connection status will be indicated at address 100 bit 1. Palert will stream out 1200 bytes data packet every second to servers when connections are established. Please refer to address 193 for more information about this packet.

These addresses store TCP server 0 IP information as the order ip1.ip2.ip3.ip4 as below.

- ip1: Address 176 high byte
- ip2: Address 176 low byte
- ip3: Address 177 high byte
- ip4: Address 177 low byte

When these addresses are changed user must also write 2 into address 113 to effect the changes.

OAddress 178~179, TCP Server 1 IP

Palert has ability to connect with servers automatically. This is an advantage for Palert at the site without real IP. It is also the must function for EEW system. When server 1 connections enable is set (address 118 bit 6). Palert will try to connect to server 1 at all time. The connection status will be indicated at address 100 bit 2. Palert will stream out 1200 bytes data packet every second to servers when connections are established. Please refer to address 193 for more information about this packet.

These addresses store TCP server 1 IP information as the order ip1.ip2.ip3.ip4 as below.

- ip1: Address 178 high byte
- ip2: Address 178 low byte
- ip3: Address 179 high byte
- ip4: Address 179 low byte

When these addresses are changed user must also write 2 into address 113 to effect the changes.

Server 1 IP address is also the FTP server IP for firmware upgrade. Once user writes 0x180 into address 113 will force Palert to upgrade firmware from FTP server.

OAddress 180~191, Palert Network Address Setting

These addresses store IP information for Palert. User must write 4 into address 113 when there is any change for these addresses. The factory preset values are described as below. IP: 192.168.255.1 (Address 180 to 183) Mask: 255.255.0.0 (Address 184 to 187) Gateway: 192.168.0.1 (Address 188 to 191) User could ground DI0 in order to display Palert IP information from 7 segments LED. Please maintain Palert off any vibration in case of Palert displays earthquake trigger information. Attention! Improper network address setting may cause Palert malfunction.

OAddress 192, Available Connections for Host

Palert offers 3 TCP connections for hosts simultaneously. This address indicates remain connections.

OAddress 193, Streaming Output Control

Palert will stream out data packet continually every second when user writes 1 or 2 into this address. Palert will also send out one additional packet in 200 bytes at the moment when below conditions is satisfied.

- 1. P wave is detected.
- 2. Exactly three seconds after P wave.
- 3. Pd great equal Pd watch threshold if Pd trig algorithm is enabled.
- 4. Pd great equal Pd warning threshold if Pd trig algorithm is enabled.

The packet data format is depending on the data 1 or 2. Palert will stop streaming when user writes 0 to this address. Please notice that these kinds of data packets are not standard Modbus protocol so it is not possible to be received by standard PLC. Streaming output is also the must function for EEW system. Regarding to the layout of these packets are described as below.

Mode 1	Mode 2	Integer Number	Description (Value in parentheses indicate Palert	
			Modbus registers addresses)	
			Packet type	
			1: Normal streaming packet	
			119: P wave streaming packet	
		0	300: Pd within 3 seconds after P wave	
			1191: Pd watch streaming packet	
			1192: Pd warning streaming packet	
		1	Event flag (111)	
		2	system time-year (147)	
		3	system time-month (148)	
		4	system time-day (149)	
		5	system time-hour (150)	
		6	system time-minute (151)	
		7 (high byte)	system time-second (152)	
		7 (low byte)	system time-10 msecond	
		8	event time-year (141)	
		9	event time-month (142)	
		10	event time-day (143)	
		11	event time-hour (144)	
		12	event time-minute (145)	
		13 (high byte)	event time-second (146)	
		13 (low byte)	event time-10 msecond	
		14	Serial number (200)	
		15	Displacement watch threshold (197)	

Mode 1	Mode 2	Integer Number	Description (Value in parentheses indicate Palert	
			Modbus registers addresses)	
		16	PGV within 1 second (125)	
		17	PGD within 1 second (126)	
		18	PGA within 10 seconds (140)	
		19	PGA trig axis (135)	
		20	Pd warning threshold (162)	
		21	PGA warning threshold (161)	
		22	Displacement warning threshold (160)	
		23	Pd flag (139)	
		24	Pd watch threshold (164)	
		25	PGA watch threshold (121)	
		26	Intensity now (109)	
		27	Intensity maximum (110)	
		28	PGA within 1 second	
		29	PGA axis within 1 second (138)	
		30	tau-c (138)	
		31	Trig mode (163)	
		32	Operation Mode (118)	
		33	Durations for watch and warning (195)	
		34	Firmware version	
		35 ~ 38	IP Address (180~183)	
		39 ~ 40	Server 0 IP address (176~177)	
		41 ~ 42	Firmware version IP Address (180~183)	
		43 ~ 46	IP Address (180~183)Server 0 IP address (176~177)Server 1 IP address (178~179)NTP server IP address (171~174)Sockets remain (192)	
		47	Sockets remain (192)	
		48	Connection flag (100)	
		49	D I/O status (119)	
		50	EEW register (198)	
		51	Pd in vertical axis (137) (0.001cm)	
		52	Pv in vertical axis (136) (0.01cm/sec)	
		53	Pa in vertical axis (counts/sec^2)	
		54	Maximum vector in earthquake (108)	
		55	Maximum a axis acceleration in earthquake (129)	
		56	Maximum b axis acceleration in earthquake (130)	
		57	Maximum c axis acceleration in earthquake (131)	

Mode 1	Mode 2	Integer Number	Description (Value in parentheses indicate Palert
			Modbus registers addresses)
		50	Maximum a axis acceleration of vector in
		58	earthquake (132)
		59	Maximum b axis acceleration of vector in
		59	earthquake (133)
		60	Maximum c axis acceleration of vector in
		00	earthquake (134)
		61 ~ 69	Reserved
		70	Synchronized Character 0x3033
		71	Synchronized Character 0x3035
		72	Synchronized Character 0x3135
		73	Synchronized Character 0x3031
		74	Packet Length
		75	EEWS DO0 intensity (202)
		76	EEWS DO1 intensity (203)
		77 ~ 78	FTE-D04 IP addresses (204 ~ 205)
		79 ~ 99	Reserved
		100	a axis Acceleration of Record 1
		101	b axis Acceleration of Record 1
		102	c axis Acceleration of Record 1
		103	Pd of Record 1
		104	Displacement of Record 1
		595	a axis Acceleration of Record 100
		596	b axis Acceleration of Record 100
		597	c axis Acceleration of Record 100
		598	Pd of Record 100
		599	Displacement of Record 100

Notes:

a. Integer format is low byte at first and follow with high byte.

b. This streaming function is only available for Modbus TCP.

OAddress 194, Palert Modbus RTU Address setting

Factory preset value is 101. The possible number is from 1 to 255. Please write 2 into address 113 when there is change in this address.

OAddress 195, Watch and Warning Period

This address stores the watch and warning timer for displacement, Pd and PGA trigger algorithms. High byte as watch timer in second (recommended value is 10). Low byte as warning timer in second (recommended value is 30).

Please refer to the following table for more detail about DOs activity. The numbers with under line shown on this table are addresses.

	DO0		DO1		
DO Status	ON	OFF	ON	OFF	
Trigger Mode					
Displacement					
Trigger	<u>159</u> > <u>197</u>	Timer = <u>195</u> High byte	<u>159</u> > <u>160</u>	Timer = <u>195</u> Low byte	
<u>163</u> bit 0					
Pd Trigger	<u>137</u> > <u>164</u>	Timer = <u>195</u> High byte	<u>137 > 162</u>	Timer = <u>195</u> Low byte	
<u>163</u> bit 1	<u>157</u> > <u>104</u>	1111er – <u>135</u> High byte	<u>157</u> > <u>102</u>	$\frac{135}{100} = \frac{135}{100} = 100$	
PGA Trigger		Timer = <u>195</u> High byte	PGA > <u>161</u>	Timer = <u>195</u> Low byte	
<u>163</u> bit 2	PGR 2 <u>121</u>	Fine = 195 Fight byte	FGA > <u>101</u>	11111er = 195 Low byte	
	<u>112</u> = 1		<u>112</u> = 1		
	AND	Timer = <u>120</u>	AND		
STA/LTA Trigger	<u>128</u> >= <u>117</u>	OR	<u>128</u> >= <u>117</u>	Timer = <u>120</u>	
<u>163</u> bit 3	AND	DO1 ON	AND		
	<u>108</u> > <u>123</u>		<u>108</u> > <u>124</u>		

OAddress 196, Maximum Acceleration within 1 Second

This address stores the maximum acceleration within 1 second, unit in gal.

OAddress 197, a Axis Displacement Watch Threshold

This address stores the displacement watch threshold for a axis, unit in 0.001 cm. The recommended value is 0.2 cm. The earthquake signal will be set (address 111 bit 0) when displacement trigger algorithm is enabled (address 163 bit 0) and real-time a axis displacement (address 159) is great equal to this threshold.

Please refer to the following table for more detail about DOs activity. The numbers with under line shown on this table are addresses.

		DO0	DO1	
DO Status Trigger Mode	ON	ON OFF		OFF

	DO0		DO1	
DO Status Trigger Mode	ON	OFF	ON	OFF
Displacement				
Trigger	<u>159</u> > <u>197</u>	Timer = <u>195</u> High byte	<u>159</u> > <u>160</u>	Timer = <u>195</u> Low byte
<u>163</u> bit 0				
Pd Trigger	137 > 164	Timer = 195 High byte	<u>137</u> > <u>162</u>	Timer = 195 Low byte
<u>163</u> bit 1	<u>137</u> > <u>104</u>	$Timer = \underline{195} High byte$	<u>157</u> > <u>102</u>	$\operatorname{Him} e = \underline{195} \operatorname{LOW} \operatorname{Dyle}$
PGA Trigger	PGA > <u>121</u>	Timor – 105 High byto	PGA > <u>161</u>	Timor – 195 Low byto
<u>163</u> bit 2	PGA 2 <u>121</u>	Timer = <u>195</u> High byte	PGA > <u>101</u>	Timer = <u>195</u> Low byte
	<u>112</u> = 1		<u>112</u> = 1	
STA/LTA Triggor	AND	Timer = <u>120</u>	AND	
STA/LTA Trigger 163 bit 3	<u>128</u> >= <u>117</u>	OR	<u>128</u> >= <u>117</u>	Timer = <u>120</u>
<u>105</u> Dit 3	AND	DO1 ON	AND	
	<u>108</u> > <u>123</u>		<u>108</u> > <u>124</u>	

OAddress 198, Earthquake Pre-Warning Register

This address is designed for received EEW information from EEW server. High byte as predict intensity and low byte as remain seconds for shock wave arrive. When there are data write into this address, two DOs will be turned on and 7 segments LED will display intensity and count down seconds. It will display local earthquake information immediately if Palert detects earthquake.

This function only available when Palert is integrated with EEW system and with seismologist supports. It is also important that the system must obey the individual countries regulations or laws for dispatch earthquake information.

SANLIEN has provided EEWS service in Taiwan areas which information comes from CWB since 2014/01/01. Please consult our sales if you would like to active this service in Palert system.

OAddress 199, Palert Firmware Version

This address indicates the Palert firmware version.

OAddress 200, Palert Serial Number

This Address stores the serial number of Palert. User could change this serial number based on the application needed. The possible range is from 1 to 65535.

OAddress 201, Modbus port setting

This Address stores the Palert Modbus RTU port setting. The available setting is 1 (RS-232) or 2 (RS-485). The factory default setting is 2. Please write 2 into address 113 when there is changed in this address.

OAddress 202, DO0 activated setting for pre-warning (Regional EEWS)

This address stores the activated intensity threshold setting for DO0 while address 198 is written by EEWS server during earthquake pre-warning. User must write 2 into address 113 to store this setting into EEPROM.

OAddress 203, DO1 activated setting for pre-warning (Regional EEWS)

This address stores the activated intensity threshold setting for DO1 while address 198 is written by EEWS server during earthquake pre-warning. User must write 2 into address 113 to store this setting into EEPROM.

OAddress 204 ~ 205, EEWS warning device FTE-D04 IP address

Palert has ability to connect with EEWS warning device FTE-D04 to issue earthquake pre-warning. When FTE-D04 connections enable is set (address 118 bit 8). Palert will try to connect to FTE-D04 at all time. The connection status will be indicated at address 100 bit 4. These addresses store FTE-D04 IP information as the order ip1.ip2.ip3.ip4 as below.

- ip1: Address 204 high byte
- ip2: Address 204 low byte
- ip3: Address 205 high byte
- ip4: Address 205 low byte

When these addresses are changed user must also write 2 into address 113 to effect the changes.

4.3. Modbus Related Information for Palert

Palert supports Modbus TCP and Modbus RTU simultaneously. ID will be 1 when connected by Modbus TCP. The Modbus RTU communication parameters is "19200, n, 8, 1". Palert supports Modbus function 1, 2, 3, 6 and 16.

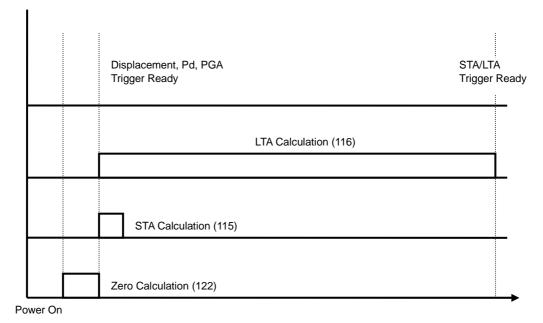
Example: Set STA as 2.5 seconds by using Modbus TCP.

2.5 seconds equal to 25 * 0.1 seconds, 25 = 0x0019. Function code is 6 and the register address is 114 = 0x0072 (Palert uses zero based system). The command set will be like this one as below.

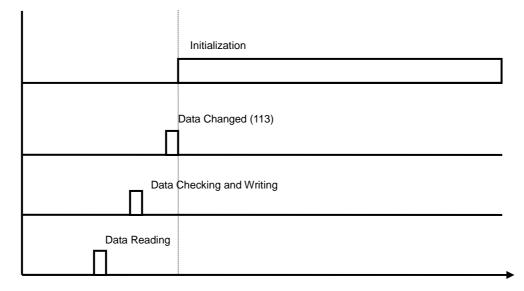
TID (hex)	PID (hex)	Field Length (hex)	UID (hex)	FC (hex)	Reg_Offset. (hex)	Value (hex)
0001	0000	0006	01	06	0072	0019

TID: Transaction Identifier;

UID: Unit Identifier;

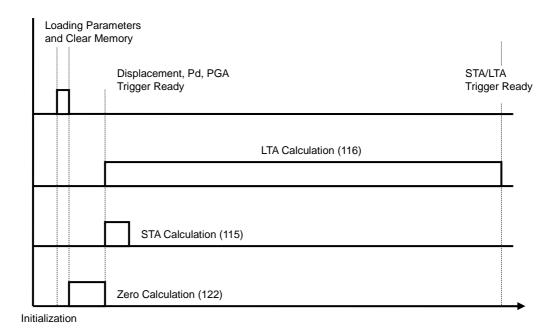

FC: Function Code

PID: Protocol Identifier (Protocol Length);



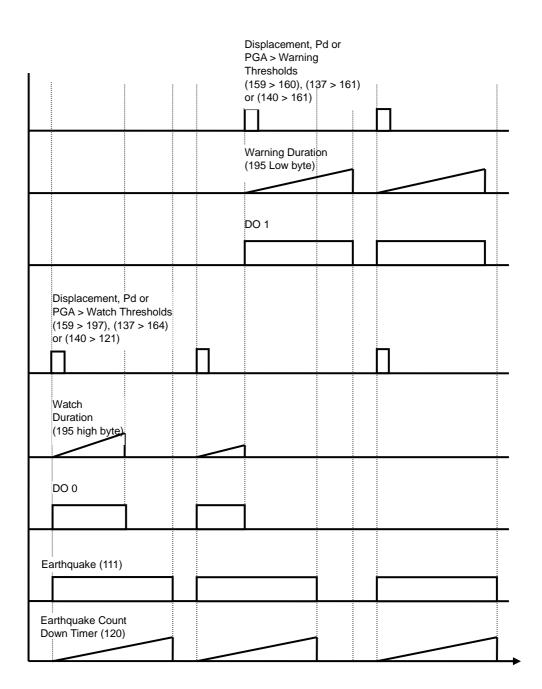
4.4. Palert Operation Time Sequence

4.4.1. Power ON Time Sequence



4.4.2. Parameter Setting Time Sequence

4.4.3. Initialization Time Sequence



4.4.4. STA/LTA Trigger Time Sequence

LTA Read	y (112)			
			Max. Acceleration	
STA/LTA (12	28) > Threshold	(117)		
Earthquake	(111)			
Earthquake Down Timer	Count (120)			

4.4.5. Displacement, Pd, and PGA Trigger Time Sequence

Table 1. Earthquake Intensity Table, Central Weather Bureau, Taiwan.

Intensity Scale		Range of Ground Acceleration	Effects on People	Effects Indoors	Effects Outdoors
1	Very minor	0.8~2.5gal	Felt only by a few people at rest, vibrates slightly.		
2	Minor	2.5~8.0gal	Felt by the majority of people. Some awakened from sleeping.	Hanging lamps and objects vibrate slightly.	Standing vehicles vibrate slightly, similar to being passed by a truck, but only lasts for a short time.
3	Light	8~25gal	Felt by nearly everyone, a few frightened.	Buildings shake; dishes, windows, and doors shake making sounds; hanging objects shake visibly.	Standing vehicles vibrate obviously; electric wires sway gently.
4	Moderate	25~80gal	Many people are quite frightened, looking for safe shelter. Most people are awakened from sleep.	Buildings rock noticeably; unstable objects topple over; heavy furniture moves; may cause slight damage.	Felt by drivers; electric wires sway obviously, felt by people walking.
5	Strong	80~250gal	Most people are considerably frightened.	Walls crack; heavy furniture may overturn.	Noticeably felt by drivers; some chimneys and large archways topple over.
6	Very Strong	250~400gal	People have trouble walking due to violent rocking.	Damage to some buildings; heavy furniture overturns; doors and windows bend.	Drivers have trouble steering; sand and clay blasts occur.
7	Great	400gal and above	People move with difficulty due to severe rocking.	Severe damage to or collapse of some buildings; almost all furniture moves or falls down.	Landslides and faults rupture occur; railway bend; underground lines break.

Note: 1gal = 1cm/sec*sec

Appendix 1. EEW Paper by Professor Yih-Min Wu., National Taiwan University.